Creation of Specific-to-Problem Kernel Functions for Function Approximation
نویسندگان
چکیده
Although there is a large diversity in the literature related to kernel methods, there are only a few works which do not use kernels based on Radial Basis Functions (RBF) for regression problems. The reason for that is that they present very good generalization capabilities and smooth interpolation. This paper studies an initial framework to create specific-to-problem kernels for application to regression models. The kernels are created without prior knowledge about the data to be approximated by means of a Genetic Programming algorithm. The quality of a kernel is evaluated independently of a particular model, using a modified version of a non parametric noise estimator. For a particular problem, performances of generated kernels are tested against common ones using weighted k-nn in the kernel space. Results show that the presented method produces specific-to-problem kernels that outperform the common ones for this particular case. Parallel programming is utilized to deal with large computational costs.
منابع مشابه
The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملAn interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function
In this paper, an interior-point algorithm for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملSolving integral equations of the third kind in the reproducing kernel space
A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...
متن کاملLocal Self-concordance of Barrier Functions Based on Kernel-functions
Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier function for the domain of the problem that has to be solved. Recently, a wide class of new barrier functions has been introduced in which the functions are not self-concordant, but despite this fact give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier functio...
متن کامل